Ren Tao

Associate Professor

tao.ren@sjtu.edu.cn

Address:Main Building A-405

LCC Full Time Power Engineering
Educational Background
  • 2011.08-2015.05, Ph.D. in Mechanical Engineering, University of California, Merced, California, USA
  • 2008.09-2011.07, M.S. in Thermal Engineering, Huazhong University of Science and Technology, Wuhan, China
  • 2004.09-2008.07, B.S. in Thermal and Power Engineering, Xi'an Jiaotong University, Xi'an, China
Bio
  • 2018.09-present, Associate Professor, China-UK Low Carbon College, Shanghai Jiao Tong University
  • 2017.06-2018.05, Assistant Project Scientist and Lecturer, University of California, Merced
  • 2015.06-2017.05, Postdoctoral Scholar and Lecturer, University of California, Merced
Research Fields
  • Radiation in Combustion
  • Optical Detections of Greenhouse Gases by Satellite Spectra and Machine Learning
  • Combustion Diagnostics by Infrared Spectroscopy and Machine Learning
  • High-temperature Gas Spectroscopy
Research Projects
  • "The efficient retrieval of the vertical concentration profiles of greenhouse gases from atmospheric remote sensing spectral radiative measurements," National Natural Science Foundation of China, 1/2023-12/2026, Principal Investigator.
  • "The effects of turbulence-radiation-interactions on the spectral thermal radiation in combustion systems,"  Shanghai Municipal Natural Science Foundation, 7/2020-6/2023, Principal Investigator.
  • "High-fidelity thermal radiation models and measurements for high-pressure reacting laminar and turbulent flows," Air Force Office of Scientific Research, Participating researcher, 4/1/2010-3/31/2013, $439,184.
  • "Radiation Tools for the Determination of Temperatures and Concentrations from Radiometric Measurements in Laminar and Turbulent Combustion Systems," National Science Foundation, Leading researcher, 6/1/2010-5/31/2013, $325,000.
  • "A General Solver Framework for Radiative Heat Transfer Models in Combustion Systems," CFDR Corporation (subcontract of Air Force Office of Scientific Research SBIR I), Leading researcher, 6/1/2014-2/28/2015, $50,000.
  • "A General Solver Framework for Radiative Heat Transfer Models in Combustion Systems," CFDR Corporation (subcontract of Air Force Office of Scientific Research SBIR II), Leading researcher, 6/15/2015-6/14/2017, $352,029.
Publications

Journal papers

  1. F. Xie*, T. Ren*, C. Zhao, Y. Wen, Y. Gu, M. Zhou, P. Wang, K. Shiomi, and I. Morino. Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements, Atmospheric Measurement Techniques, 17, 3949–3967, 2024.

  2. W. Chen, T. Ren* and C. Zhao. A machine learning based model for gray gas emissivity and absorptivity of H2O-CO2-CO-N2 mixtures. Journal of Quantitative Spectroscopy and Radiative Transfer, 312: 108798, 2024

  3. T. Ren*, Y. Han, M. F. Modest, A. Fateev and G. Sutton. Evaluation of spectral line mixing models and the effects on high pressure radiative heat transfer calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 302:108555, 2023

  4. Y. Yang, T. Ren*, C. Zhao and T. Jin. Assessment of turbulence–radiation interactions in spectral radiative emission–absorption modeling. International Communications in Heat and Mass Transfer, 140:106554, 2023

  5. F. Xie, T. Ren*, Z. Zhao and C. Zhao. A machine learning based line-by-line absorption coefficient model for the application of atmospheric carbon dioxide remote sensing. Journal of Quantitative Spectroscopy and Radiative Transfer, 296:108441, 2023

  6. H. Li, T. Ren*, X. Liu* and C. Zhao. U-Net applied to retrieve two-dimensional temperature and CO2 concentration fields of laminar diffusion flames. Fuel, 324:12447, 2022

  7. T. Ren*, H. Li, M. F. Modest and C. Zhao. Machine learning applied to the retrieval of three-dimensional scalar fields of laminar flames from hyperspectral measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 279:108047, 2022

  8. Z. Zhao, F. Xie, T. Ren* and C. Zhao. Atmospheric CO2 retrieval from satellite spectral measurements by a two-step machine learning approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 278:108006, 2022

  9. T. Ren*, H. Li, M. F. Modest and C. Zhao. Efficient two-dimensional scalar fields reconstruction of laminar flames from infrared hyperspectral measurements with a machine learning approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 271:107724, 2021

  10. C. Wang, M. F. Modest*, T. Ren, J. Cai and B. He. Comparison and refinement of the various full-spectrum k-distribution and spectral-line-based-weighted-sum-of-gray-gases models for nonhomogeneous media. Journal of Quantitative Spectroscopy and Radiative Transfer, 271:107695, 2021

  11. Y. Zhou, C. Wang, T. Ren* and C. Zhao. A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas–soot mixtures. Journal of Quantitative Spectroscopy and Radiative Transfer, 268:107628, 2021

  12. Q. Wang, Z. Li, C. Li, H. Liu, and T. Ren*. A machine learning approach assisting soot radiation-based thermometry to recover complete flame temperature field in a laminar flameApplied Physics B: Lasers and Optics, 127: 36, 2021

  13. T. Ren, Y. Zhou, Q. Wang*, H. Liu*, Z. Li, and C. Zhao. Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flamesOptics Express. 29(2): 1678-1693, 2021

  14. Y. Zhou, C. Wang and T. Ren*A machine learning based efficient and compact full-spectrum correlated k-distribution modelJournal of Quantitative Spectroscopy and Radiative Transfer, 254:107199, 2020

  15. T. Ren*, M. F. Modest, A. Fateev, G. Sutton, W. Zhao, and F. Rusu. Machine Learning applied to retrieval of temperature and concentration distributions from infrared emission measurementsApplied Energy, 252, 113448, 2019

  16. T. Ren* and M. F. Modest. Line-by-line random-number database for photon Monte Carlo simulations of radiation in participating media. Journal of Heat Transfer, 141(2):022701, 2019

  17. C. Wang, B. He, M. F. Modest*, and T. Ren. Efficient full-spectrum correlated-k-distribution look-up table. Journal of Quantitative Spectroscopy and Radiative Transfer, 219:108–116, 2018

  18. T. Ren, M. F. Modest*, and D. C. Haworth. Simulating turbulence radiation interactions using the presumed probability density function method. International Journal of Heat and Mass Transfer, 121:911–923, 2018

  19. T. Ren, M. F. Modest*, and S. Roy. Monte Carlo simulation for radiative transfer in a high-pressure industrial gas turbine combustion chamber. Journal of Engineering for Gas Turbines and Power, 140(5):051503, 2018

  20. T. Ren and M. F. Modest*. Optical determination of temperature and concentrations of homogeneous turbulent gas mixtures. International Journal of Heat and Mass Transfer, 104:362–373, 2017

  21. T. Ren and M. F. Modest*. Optical determination of temperature and species concentration for homogeneous turbulent gas medium. International Journal of Heat and Mass Transfer, 90:1178–1187, 2015

  22. T. Ren and M. F. Modest*. Temperature profile inversion from carbon-dioxide spectral intensities through Tikhonov regularization. Journal of Thermophysics and Heat Transfer, 30(1):211–218, 2015

  23. T. Ren, M. F. Modest*, A. Fateev, and S. Clausen. An inverse radiation model for optical determination of temperature and species concentration: development and validation. Journal of Quantitative Spectroscopy and Radiative Transfer, 151(0):198–209, 2015

  24. T. Ren and M. F. Modest*. Hybrid wavenumber selection scheme for line-by-line photon Monte Carlo simulations in high-temperature gases. Journal of Heat Transfer, 135(8):084501–084501, 2013

  25. X. Y. Zhao*, D. C. Haworth, T. Ren, and M. F. Modest. A transported probability density function/photon Monte Carlo method for high-temperature oxy–natural gas combustion with spectral gas and wall radiation. Combustion Theory and Modelling, 17(2):354–381, 2013

  26. 李洪绪, 陈玮, 张辰飏, 任涛*. 基于物理信息神经网络和发射光谱测量的火焰多参数反演:模型构建与实验验证[J]. 光学学报, 2025, 45(01): 01.

  27. 庞佳婕, 王良, 曾琦, 曹俊, 任涛*. 高阶球形谐波法求解辐射传输方程:模型开发与ANSYS-Fluent实现[J]. 动力工程学报, 录用 

  28. 王龙, 王良, 曾琦, 曹俊, 任涛*. 针对CO2-H2O-CO-碳烟混合介质的全光谱相关k分布辐射模型在ANSYS-Fluent中的开发与验证[J]. 动力工程学报, 录用 

  29. 韩永康,谢逢欣,任涛*. 基于伪洛伦兹线型的气体发射率计算模型[J]. 热能动力工程, 38(7): 60, 2023 

  30. 张倚成,韩永康,周亚,任涛*,刘训臣. 基于机器学习对火焰温度场和CO2浓度场的同步重建[J]. 光学学报, 40(23): 2312003, 2020  

Peer-reviewed conference papers

  1. W. Chen and T. Ren*. A machine learning-based grey gas emissivity model for H2O-CO2-CO-N2 mixtures. In Paper No.RAD-23 GR07, Thessaloniki, Greece, 2023. Proceedings of the 10th International Symposium on Radiative Transfer, RAD-23

  2. H. Li and T. Ren*. A physics informed neural network for retrieving two-dimensional scalar fields of laminar diffusion flames. In Paper No.RAD-23 IR03, Thessaloniki, Greece, 2023. Proceedings of the 10th International Symposium on Radiative Transfer, RAD-23

  3. T. Ren*, M. F. Modest. Reconstruction of Three-Dimensional Temperature and Concentration Fields of a Laminar Flame by Machine Learning. In Paper No. IR 01, Athens, Greece, 2019. Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19

  4. G. Wenjun, T. Ren, M. F. Modest*, S. Roy, and D. C. Haworth. Application of high-order spherical harmonics methods for radiative transfer in simulation of a turbulent jet flame. In ICHMT Digital Library Online, 2017

  5. T. Ren and M. F. Modest*. Line-by-Line Random-Number Database for Monte Carlo Simulations of Radiation in Combustion System. In ICHMT Digital Library Online, 2017

  6. T. Ren, M. F. Modest*, and S. Roy. Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber. In Paper No. HT2017-4819, page V001T02A003, Bellevue, Washington, 2017. Proceedings of the 2017 ASME Summer Heat Transfer Conference

  7. T. Ren and M. F. Modest*. Optical determination of temperature and concentrations for laminar and turbulent gas mixtures. In Paper No.RAD-16-33, Cappadocia, Turkey, 2016. Proceedings of the 8th International Symposium on Radiative Transfer, RAD-16

  8. T. Ren and M. F. Modest*. Optical determination of temperature and species concentration for homogeneous turbulent gas medium. In Paper No. TFESC-12546, New York City, USA, 2015. Proceedings of the 1st Thermal and Fluids Engineering Summer Conference, TFESC-1

  9. T. Ren and M. F. Modest*. Temperature profile inversion from CO2 spectral intensities through Levenberg-Marquardt optimization and Tikhonov regularization. In Paper No.1896725, Atlanta, GA, 2014. 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference

  10. T.  Ren, T. A. Reeder, and M. F. Modest*. An inverse radiation model for optical determination of temperature and CO2 concentration: development and validation. In Paper No. IMECE2013 64973, San Diego, CA, 2013. Proceedings of ASME 2013 International Mechanical Engineering Congress & Exposition

  11. T. Ren, T. A. Reeder, and M. F. Modest*. Investigation of optimal wavenumber range and resolution for determination of combustion gas temperature and concentration. In Paper No. HT2013-17503, Minneapolis, MN, 2013. Proceedings of the 2013 ASME Summer Heat Transfer Conference

  12. T. Ren and M. F. Modest*. Improved wavenumber selection scheme for line-by-line photon Monte Carlo simulations in combustion systems. In Paper No. HT2012-58366, Rio Grande, Puerto Rico, 2012. Proceedings of the 2012 ASME Summer Heat Transfer Conference

 

Teaching

       Shanghai Jiao Tong University       

         Numerical Methods in Low Carbon Energy Processing, 32 Hours, 2022-present

         Advanced Heat Transfer (Graduate), 48 Hours, 2019-present

       University of California, Merced        

         Fluid Mechanics (Undergraduate), 48 Hours, 2018,  Spring semester

         Heat Transfer (Undergraduate), 48 Hours, 2016, 2017, Summer semester

Other Professional Activities

Member of the Scientific Council of ICHMT

Youth Editorial Board Member of Carbon Neutrality

Session Chair for the "gas radiation" session at the 10th International Symposium on Radiative Transfer

Reviewer for journals:

International Journal of Heat and Mass Transfer, Combustion and Flame, Applied Energy, Journal of Quantitative Spectroscopy and Radiative Heat Transfer, International Communications in Heat and Mass Transfer, Optics Express, Optics Letters, Journal of Thermophysics and Heat Transfer, Journal of Heat Transfer, Journal of Propulsion and Power, Journal of Thermal Science and Engineering Applications, Computer Physics Communications, International Journal of Digital Earth.