全职导师
- 2018.11 - 至今,威廉希尔WilliamHill官方网站 威廉希尔WilliamHill官方网站,副教授
- 2019.6-2019.9,新加坡国立大学 环境研究所 客座副教授
- 2014.02 - 2018.10,新加坡国立大学 环境研究所,研究员
- 2008.09 - 2013.12, 大连理工大学 环境学院,环境工程 工学博士(PH.D)
- 有机固体废弃物处理与资源化
- 厌氧消化废物能源化技术与能源系统
- 二氧化碳固定协同厌氧生物转化
- 碳捕集与资源化利用
欢迎申请人以本科短期训练、硕士、博士、联合培养研究生、科研助理、博士后等形式加入团队。
课题组长期与新加坡国立大学合作,基于威廉希尔WilliamHill官方网站与新加坡国立大学CREATE-E2S2中心构建了长短期员工赴新加坡交流的机制,合作研究主要聚焦城市有机固体废弃物资源化技术和生态能源系统研究,开展“超大城市的能源与环境可持续发展解决方案”Create-E2S2项目及多个中新双方合作课题。目前,课题组赴新短期交流员工4人次,联合培养博士生1人次,欢迎环境、化学化工、生物等相关专业的申请人加入团队。有意者请将完整版CV发至邮箱lcczjx@sjtu.edu.cn
- 2022-2026,国家自然科学基金面上项目,厌氧消化中基于铁生物利用度调控的微生物电子分岔机制研究,项目负责人。
- 2021-2025,国家重点研发计划,高附加值化学品和生物质能定向转化及低能耗分离关键技术,子课题负责人。
- 2020-2022,国家自然科学基金项目,零价铁驱动异化铁还原强化微生物电催化厌氧甲烷化的调控机制及耐盐机制研究,负责人
- 2020-2023,国家重点研发计划,城乡混合有机垃圾多源有机物源头快速稳定化技术及装备,子课题负责人
- 2020-2022,上海市固体废物处理与资源化工程研究中心开放课题,基于微氧处理的餐厨垃圾与污泥厌氧共消化应用基础研究,负责人
- 2019-2021,上海市浦江人才计划,零价铁强化微生物电催化厌氧产甲烷的微氧调控机制及机理解析,负责人
- 2018-2024,国际科技合作项目-新加坡国家研究基金会(NRF)CREATE计划项目,Waste-to-Resource: Eco-Energy System towards Environmental Sustainability, Co-PI
- 2020-2023,中国与新加坡国际科技合作项目,环境新生污染物“一带一路”中新联合实验室,骨干成员
- 2020-2023,中国与新加坡国际科技合作项目,基于纳米催化净化的餐厨垃圾高效集成治理系统开发及其示范应用,子课题负责人
- 2020-2023,中国与加拿大国际合作与交流项目,AI+可持续城市垃圾资源化管理,子课题负责人
[69] P.S. Zhang, T.Y. Zhang, J.Q. Chen, J.X. Zhang*, Y.L. He, A Novel Role of Hematite in Anaerobic Digestion: Manipulating Membrane-bound Electron Transport Chain by Construction of Biologic Capacitors with Humic Acid. Environmental Science and Technology 57, 10828-10837, (2023).
[68] T.Y. Zhang, J.X. Zhang*, P.S. Zhang, J.B. Wang, Y.L. He, Electronic bifurcation: A new perspective on Fe bio-utilization in anaerobic digestion of lactate" Environmental Science and Technology 57, 10448-10457 (2023).
[67] M. Yan, H.L. Tian, S. Song, H.T.W. Tan, J.T.E. Lee, J.X. Zhang, P. Sharma, Y.W. Tiong, Y.W. Tong*. Effects of digestate-encapsulated biochar on plant growth, soil microbiome and nitrogen leaching. Journal of Environmental Management 334, 117481 (2023).
[66] J.R. Liu, H.W. Kua*, C.H. Wang, Y.W. Tong, J.X. Zhang, Y.H. Peng. Extended exergy accounting theory to design waste-to-energy management system under uncertainty. Energy 278, 127927 (2023).
[65] H.L. Tian, M. Yan, J.Y. Zhou, Q.L. Wu, Y.W. Tiong, H.T. Lam, J.X. Zhang, Y.W. Tong*, A closed loop case study of decentralized food waste management: System performance and life cycle carbon emission assessment. Science of The Total Environment 899, 165783, (2023)
[64] E. Workiea, V. Kumar, A. Bhatnagar, Y.L. He, Y.J. Dai, Y.W. Tong, Y.H. Peng, J.X. Zhang*, C.B. Fu. Advancing the bioconversion process of food waste into methane: A systematic review. Waste Management 156,187-197, (2023).
[63] T.Y. Zhang, P.S. Zhang, Z.Y. Hu, Q.X. Qi, Y.L. He, J.X. Zhang*, "New insight on Fe-bioavailability: Bio-uptake, utilization and induce in optimizing methane production in anaerobic digestion" Chemical Engineering Journal 441, 136099 (2022).
[62] J.X. Zhang*, J.Q. Chen, R.Z. Ma, V. Kumar, Y.W. Tong, Y.L. He, F.J. Mao**, “Mesophilic and thermophilic anaerobic digestion of animal manure: Integrated insights from biogas productivity, microbial viability and enzymatic activity” Fuel 320, 123990 (2022).
[61] J.Q. Chen, P.S. Zhang, J.X. Zhang*, Y.L. He, Y.W. Tong, “Micro-Nano Magnetite-Loaded Biochar Enhances Interspecies Electron Transfer and Viability of Functional Microorganisms in Anaerobic Digestion.” ACS Sustainable Chemistry & Engineering 10, 2811-2821 (2022).
[60] Y.F. Jiang, X.S. Li, J. Yao, X. Wan, J.X. Zhang*, Y.J. Dai*, “Design and performance simulation of a distributed aerobic composting system assisted by solar PV/T heat pump”. Renewable Energy 196, 547-559 (2022).
[59] X. Wan, J. Li, L. Xie, X.M. Wei, J.Q. Wu, Y.W. Tong, X.N. Wang, Y.L. He, J.X. Zhang, Machine learning framework for intelligent prediction of compost maturity towards automation of food waste composting system. Bioresource Technology 365, 128107 (2022).
[58] T.H. Tsui, L. Zhang, J.X. Zhang, Y.J. Dai, Y.W. Tong*, Methodological framework for wastewater treatment plants delivering expanded service: Economic tradeoffs and technological decisions. Science of The Total Environment 823, 153616 (2022).
[57] T.H. Tsui, L. Zhang, J.X. Zhang, Y.J. Dai, Y.W. Tong*, Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application. Renewable and Sustainable Energy Reviews 157, 112053 (2022).
[56] E.Y. Lim, J.T.E. Lee, L. Zhang, H.L. Tian, K.C. Ong, Z.K. Tio, J.X. Zhang, Y.W. Tong*, Abrogating the inhibitory effects of volatile fatty acids and ammonia in overloaded food waste anaerobic digesters via the supplementation of nano-zero valent iron modified biochar. Science of The Total Environment 817, 152968 (2022).
[55] J. Li, L. Zhang, C.X. Li, H.L. Tian, J. Ni, J.X. Zhang, Y.W. Tong*, X.N. Wang*, Data-Driven Based In-Depth Interpretation and Inverse Design of Anaerobic Digestion for CH4-Rich Biogas Production. ACS EST Engineering (2022) DOI 10.1021/acsestengg.1c00316
[54] V. Narisetty, L. Zhang, J.X. Zhang, C. S. Lin, Y.W. Tong, P.L. Show, S.K. Bhatia, A. Misra, V. Kumar*. Fermentative production of 2,3-Butanediol using bread waste – A green approach for sustainable management of food waste. Bioresource Technology 358, 127381 (2022).
[53]J.T.E. Lee, E.Y. Lim, L. Zhang, T.H. Tsui, H.L. Tian, M. Yan, S.H. Lim, M.B. Majid, M.C. Jong, J.X. Zhang, S.O. Yong, Y.W. Tong*. Methanosarcina thermophila bioaugmentation and its synergy with biochar growth support particles versus polypropylene microplastics in thermophilic food waste anaerobic digestion. Bioresource Technology 360, 127531 (2022).
[52] J.T.E. Lee, N. Dutta, L. Zhang, T.T.H. Tsui, S.H. Lim, Z.K. Tio, E.Y. Lim, J.C. Sun, J.X. Zhang, C.H. Wang, S.O. Yong, B.K. Ahring, Y. W. Tong*. Bioresource Technology 360, 127590 (2022).
[51] V. Narisetty, S. Nagarajan, S. Gadkari, V.V. Ranade, J.X. Zhang, K. Patchigolla, A. Bhatnagar, M.K. Awasthi, A. Pandey, V. Kumar*. Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach. Energy Conversion and Management 266, 115784 (2022).
[50] J.X. Zhang, Y.X. Cui, T.Y. Zhang, Q. Hu*, Y.W. Tong, Y.L. He, Y.J. Dai, C.H. Wang, Y.H. Peng, "Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: Enhanced bioenergy generation and porous biochar production" Bioresource Technology 331, 125051 (2021).
[49] Q.X. Qi, C. Sun, C. Cristhian, T.Y. Zhang, J.X. Zhang*, H.L. Tian, Y.L. He, Y.W. Tong, "Enhancement of methanogenic performance by gasification biochar on anaerobic digestion" Bioresource Technology 330, 124993 (2021).
[48] Y.X. Cui, F.J. Mao, J.X. Zhang*, Y.L. He*, Y.W. Tong, Y.H. Peng, "Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways. " Chemosphere 272, 129863 (2021).
[47] Q.X. Qi, C. Sun*, J.X. Zhang*, Y.L. He, Y.H. Tong, "Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: The bioavailability of trace elements and potential direct interspecies electron transfer" Chemical Engineering Journal 406, 126833 (2021).
[46] J.X. Zhang*, D.N. Gu, J.Q. Chen, Y.L. He, Y.J. Dai, K.C. Loh, Y.H. Tong*, " Assessment and optimization of a decentralized food-waste-to-energy system with anaerobic digestion and CHP for energy utilization" Energy Conversion and Management, 228, 113654 (2021).
[45] Y.Y.Q, C.Y. Xiao, E. Workie, J.X. Zhang*, Y.L. He, Y.W. Tong, Bioelectrochemical Enhancement of Methanogenic Metabolism in Anaerobic Digestion of Food Waste Under Salt Stress Conditions. ACS Sustainable Chemistry & Engineering 9, 13526-13535 (2021).
[44] L.W. Mao, T.H. Tsui, J.X. Zhang, Y.J. Dai, Y.W. Tong*, Mixing effects on decentralized high-solid digester for horticultural waste: Startup, operation and sensitive microorganisms. Bioresource Technology 333, 125216 (2021).
[43] L.W. Mao, T.H. Tsui, J.X. Zhang, Y.J. Dai, Y.W. Tong*, System integration of hydrothermal liquefaction and anaerobic digestion for wet biomass valorization: Biodegradability and microbial syntrophy. Journal of Environmental Management 293, 112981 (2021).
[42] H.L. Tian, X.N. Wang*, E.Y. Lim, J.T.E. Lee, A.W.L. Ee, J.X. Zhang, Y.W. Tong**, Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renewable and Sustainable Energy Reviews 150, 111489 (2021).
[41] J.X. Zhang*, Y.Y. Qu, Q.X. Qi, P.S. Zhang, Y.B. Zhang, Y.H. Tong, Y.L. He*, " The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: A review" Water Research 186, 116405 (2020).
[42] J.X. Zhang*, Q. Hu, Y.Y. Qu, Y.J. Dai, Y.L. He, C.H. Wang, Y.W. Tong*, "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production" Applied Energy 257, 113988 (2020).
[41] J.X. Zhang, H.L. Tian, X.N. Wang*, Y.H. Tong*, " Effects of activated carbon on mesophilic and thermophilic anaerobic digestion of food waste: Process performance and life cycle assessment" Chemical Engineering Journal 399, 125757 (2020).
[40] J.X. Zhang, Q.X. Qi, L.W. Mao, H.L. Y.L. He, K.C. Loh, Y.H. Tong*, " Mixing strategies – Activated carbon nexus: Rapid start-up of thermophilic anaerobic digestion with the mesophilic anaerobic sludge as inoculum" Bioresource Technology 310, 123401 (2020).
[39] E.Y. Lim, H.L. Tian, Y.Y. Chen, K.W. Ni, J.X. Zhang, Y.H. Tong*, " Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar" Bioresource Technology 314, 123751 (2020).
[38] J.C. Cheong, T.E. Lee, J.W. Lim, S. Song, J.X. Zhang etc. "Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa)". Science of The Total Environment 715, 136789 (2020).
[37] J.X. Zhang, L.W. Mao, K. Nithya, K.C. Loh, Y.J. Dai, Y.L. He, Y.W. Tong. "Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste" Applied Energy 249, 28-36 (2019).
[36] L.W. Mao, J.X. Zhang, Y.J. Dai, Y.W. Tong. "Effects of mixing time on methane production from anaerobic co-digestion of food waste and chicken manure: Experimental studies and CFD analysis" Bioresource Technology 294, 122177 (2019).
[35] L. Zhang, K.C. Loh, J.X.Zhang, L.W. Mao, Y.W. Tong, Y.J. Dai. “Three-stage anaerobic co-digestion of food waste and waste activated sludge: Identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters" Bioresource Technology, 285, 121333 (2019).
[34] L. Zhang, K.C. Loh*, J.W. Lim, J.X. Zhang, Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review. Renewable and Sustainable Energy Reviews, 100, 110-126 (2019).
[33] L. Zhang, K.C. Loh*, J.X. Zhang,Jointly reducing antibiotic resistance genes and improving methane yield in anaerobic digestion of chicken manure by feedstock microwave pretreatment and activated carbon supplementation. Bioresource Technology, 372, 815-824 (2019).
[32] L. Zhang, K.C. Loh*, J.X. Zhang, Enhanced food waste anaerobic digestion: An encapsulated metal additive for shear stress-based controlled release. Journal of Cleaner Production 235, 85-95 (2019).
[31] J.X. Zhang, X. Kan, Y. Shen, K.C. Loh, C.H. Wang, Y.J. Dai, Y.W. Tong*, A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment. Energy, 152, 214-222 (2018).
[30] J.X. Zhang, F.J. Mao, K.C. Loh, K.Y. Gin, Y.J. Dai, Y.W. Tong*. “Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.” Bioresource Technology, 249, 729-736 (2018).
[29] W.L. Li, K.C. Loh, J.X. Zhang, Y.W. Tong*, Y.J. Dai. “Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system.” Applied Energy, 209,400-408 (2018).
[28] X. Kan, J.X. Zhang, Y.W. Tong, C.H. Wang. “Overall evaluation of microwave-assisted alkali pretreatment for enhancement of biomethane production from brewers’ spent grain.” Energy Conversion and Management, 158, 315-326 (2018).
[27] H.H. Tong, Y. Shen, J.X. Zhang, C.H. Wang, S.G. Tian, Y.W. Tong. “A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries.” Applied Energy, 225, 1143-1157 (2018).
[26] L. Zhang, J.X. Zhang, K.C. Loh. “Activated carbon enhanced anaerobic digestion of food waste – Laboratory-scale and Pilot-scale operation.” Waste Management, 75, 270-279 (2018).
[25] L. Zhang, K.C. Loh*, J.X. Zhang, “Food waste enhanced anaerobic digestion of biologically pretreated yard waste: Analysis of cellulose crystallinity and microbial communities.” Waste Management, 79, 109-119 (2018).
[24] L. Zhang, K. C. Loh, J.X. Zhang, Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports, In press (2018).
[23] J.X. Zhang, K.C. Loh, W.L. Li, J.W. Lim, Y.J. Dai, Y. W. Tong*. “Three-stage anaerobic digester for food waste. Applied Energy, 194, 287-295 (2017) .
[22] J.X. Zhang, W.L. Li, J. Lee, K.C. Loh, Y.J. Dai, Y.W. Tong*. “Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment” Energy, 137, 479-486 (2017).
[21] J.X. Zhang, L.W. Mao, L. Zhang, K. C. Loh, Y.J. Dai, Y.W. Tong*. “Metagenomic insight into the microbial networks and metabolic mechanism in anaerobic digesters for food waste by incorporating activated carbon.” Scientific Reports 7, 11293 (2017).
[20] J.X. Zhang, K.C. Loh, J. Lee, C.H. Wang, Y.J. Dai, Y.W. Tong*. “Three-stage anaerobic co-digestion of food waste and horse manure”. Scientific Reports, 7, 1269 (2017).
[19] J.X. Zhang, L. Zhang, K.C. Loh, Y. Dai, and Y.W. Tong*, “Enhanced anaerobic digestion of food waste by adding activated carbon: Fate of bacterial pathogens and antibiotic resistance genes”, Biochemical Engineering Journal, 128C, 19-25 (2017).
[18] X. Kan, Z. Yao, J.X. Zhang, Y.W. Tong, W. Yang, Y. Dai, and C.H. Wang*, “Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment”, Bioresource Technology, 228, 77-88 (2017).
[17] J.X. Zhang, Y.B. Zhang*, X. Quan, S. Chen. “Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: Effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea.” Bioresource Technology, 179, 43-49 (2015).
[16] J.X. Zhang, Y.B. Zhang*, X. Quan. “Bio-electrochemical enhancement of anaerobic reduction of nitrobenzene and its effects on microbial community.” Biochemical Engineering Journal, 94, 85-91 (2015).
[15] J.X. Zhang, Y.B. Zhang*, B.Q. Liu, Y. Dai, X. Quan, S. Chen. “A direct approach for enhancing the performance of a microbial electrolysis cell (MEC) combined anaerobic digester by dosing ferric iron: Enrichment and isolation of Fe (III) reducing bacteria.” Chemical Engineering Journal, 248, 223-229(2014).
[14] J.X. Zhang, Y.B. Zhang*, X. Quan, S. Chen. “Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) – Anaerobic reactor.” Water Research, 47, 5719-5728 (2013).
[13] J.X. Zhang, Y.B. Zhang*, J.H. Chang, X. Quan, Q. Li. “Biological sulfate reduction in the acidogenic phase of anaerobic digestion under dissimilatory Fe (III) – Reducing conditions.” Water Research, 47, 2033-2040 (2013).
[12] J.X. Zhang, Y.B. Zhang, X. Quan, S. Chen, S. Afzal. “Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.” Bioresource Technology, 136, 273-280 (2013).
[11] J.X. Zhang, Y.B. Zhang, Y. Li, L. Zhang, S. Qiao, F.L. Yang, X. Quan. “Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode.” Bioresource Technology, 114, 102-108 (2012).
[10] J.X. Zhang, Y.B. Zhang, X. Quan, S. Chen. “Response to the comments on the paper “Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment” Chemical Engineering Journal, 248, 223-229 (2012).
[9] J.X. Zhang, Y.B. Zhang, X. Quan. “Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities.” Water Research, 46, 3535-3543 (2012).
[8] J.X. Zhang, Y.B. Zhang, X. Quan, Y. Li, S. Chen, H.M. Zhao, D. Wang. “An anaerobic reactor packed with a pair of Fe-graphite plate electrodes for bioaugmentation of azo dye wastewater” Biochemical Engineering Journal, 63, 31-37, 2012.
[7] J.X. Zhang, Y.B. Zhang, X.Quan, Y.W. Liu, X.L. An, S. Chen, H.M. Zhao. “Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment.” Chemical Engineering Journal, 174, 159-165 (2011).
[6] Y. Li, J.X. Zhang, Y.B. Zhang*, X. Quan. “Scalling-up of a zero valent iron packed anaerobic reactor for textile dye wastewater treatment: a potential technology for on-site upgrading and rebuilding of traditional anaerobic wastewater treatment plant.” Water Science and Technology, 76, 823-831 (2017).
[5] Y. Li, Y.B. Zhang, X. Quan, J.X. Zhang, S. Chen, S. Afzal. “Enhanced anaerobic fermentation with azo dye as electron acceptor: Simultaneous acceleration of organics decomposition and azo decoloration.” Journal of Environmental Sciences, 26, 1970-1976 (2014).
[4] Y.W. Liu, Y.B. Zhang, X. Quan, J.X. Zhang, H.M. Zhao, S. Chen. “Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures.” Bioresource Technology, 102, 2578-2584 (2011).
[3] Y.B. Zhang, Y.W. Jing, J.X. Zhang, L.F. Sun, X. Quan. “Performance of a ZVI-UASB reactor for azo dye wastewater treatment.” Journal of Chemical Technology and Biotechnology, 86, 199-204 (2011).
[2] Q.X. Qi, C. Sun, J.X. Zhang*, Y.L. He, Y.W. Tong, Improving urban ecosystem holistic sustainability of municipal solid waste-to-energy strategy using extended exergy accounting analysis. Science of The Total Environment 904, 166730 (2023).
[1] P. Sharma, Y.W. Tiong, M. Yan, H.L. Tian, H.T. Lam, J.X. Zhang, Y.W. Tong. Assessing Stachytarpheta jamaicensis (L.) Vahl growth response and rhizosphere microbial community structure after application of food waste anaerobic digestate as biofertilizer with renewable soil amendments. Biomass and Bioenergy, 178, 106968 (2023).
Solid Waste Disposal and Recycling(研究生)
专业实践 (研究生)
人与环境 (本科生)
1. Energies期刊Bio-energy版块编委,《净水技术》期刊青年编委;
2. WSSET-World Society of Sustainable Energy Technologies协会会员;Bioenergy Society of Singapore协会会员
3. 2021全国有机固废处理与资源化利用高峰论坛 分会场主持(成都);第三届铁环境化学及污染控制技术研讨会2020分会场主席(杭州);“13th International Conference On Solid Waste Technology and Management 2017”分会场主席(美国费城);“15th International Conference on Sustainable Energy Technologies 2016”会议执行委员会委员(新加坡);
4. 担任多个SCI期刊的审稿人:Applied energy, Renewable and Sustainable Energy Reviews, Energy, Water Research, Scientific reports, Bioresource Technology, Chemical Engineering Journal, Solar Energy, Applied Microbiology and Biotechnology, Environmental Engineering Science, Chemosphere.
- 指导员工获国家研究生奖学金2次
- 指导员工获全国节能减排大赛三等奖2次
- 2021 威廉希尔WilliamHill官方网站优秀暑期社会实践指导教师
- 2019 威廉希尔WilliamHill官方网站 教工考核优秀
- 2019上海市浦江人才
- 2018 第一届“京津冀-粤港澳”(国际)青年创新创业大赛 暨未来城市创新创业大赛 铜奖
- 2016 指导员工(Ms. Colleen Yeow)荣获新加坡科技与工程博览会项目 铜奖
- 2015 辽宁省优秀博士学位论文